A communication satellite is launched at 42000 km above Earth. Find its orbital speed. Ans. (2876 m s⁻¹)


Given:  

Height of the Communication Satellite  = h =  42,000 km = = 42 x 10³x 10³ m = 42 x 10⁶ m 

∴ Mass of the Earth = Mₑ = 6 x 10²⁴ kg
∴ Radius of the Earth = R = 6.4 x 10⁶ m
∴ Gravitational Constant = G = 6.67 x 10⁻¹¹N m² kg⁻²

To Find:
Orbital speed of Satellite = Vₒ = ? meters

Solution:   

We have the formula for the orbital speed of the Satellite

Vₒ `\sqrt \frac {G Mₑ}{Rₑ + h}`

by putting the values we have

Vₒ `\sqrt \frac {6.67 x 10⁻¹¹N m² kg⁻² x 6 x 10²⁴ kg}{6.4 x 10⁶ m + 42 x 10⁶ m }`

Vₒ `\sqrt \frac {6.67 x 6 x 10⁻¹¹⁺²⁴ }{48.4 x 10⁶}` m s⁻¹

Vₒ `\sqrt \frac {6.67 x 6 x 10⁻¹¹⁺²⁴⁻⁶ }{48.4}`m s⁻¹

Vₒ `\sqrt { 0.827 x 10⁷ }`m s⁻¹

Vₒ `\sqrt { 8.27 x 10⁶ }`m s⁻¹

Vₒ = 2.8775x 10³ m s⁻¹

or

Vₒ 2877.5 m s⁻¹

or

Vₒ 2,876 m s⁻¹

Thus the orbital speed Communications satellite will be 7430 m s⁻¹ when launched at 42,000 km above Earth. 

************************************

************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2020-21 Academic Skills and Knowledge (ASK    

Note:  Write me in the comments box below for any query and also Share this information with your class-fellows and friends.