At what altitude the value of g would become one fourth than on the surface of the Earth? Ans. (One Earth's radius)


Given:  

Gravitational  acceleration on the surface of the Earth = g =  10 ms² 

Value of  Gravitational  acceleration at height h = gâ‚• 
`\frac {g}{4}` = `\frac {10 ms⁻² }{4}`= 0.25 m s²

∴ Mass of the Earth = Mâ‚‘ = 6 x 10²⁴ kg
∴ Radius of the Earth = Râ‚‘ = 6.4 x 10⁶ m
∴ Gravitational Constant = G = 6.67 x 10⁻¹¹N m² kg⁻²



To Find:
height above the Earth = h = ? meters



Solution:   

Let a body of mass m is placed at height h where the value of gâ‚• becomes one-fourth than on the surface of the Earth
 So The distance between the centres of the body and the Earth = r = (
Râ‚‘ + h)

According to the Law of Gravitation's, we have 

F `\frac {G m Mâ‚‘}{(Râ‚‘ + h)^2 }`   -----eqn (1)

But according to the 2nd law of Newton

= W = mgâ‚• ----eqn (2)

By comparing these two Eqns 1 & 2 we have 

mgâ‚• = `\frac {G m Mâ‚‘}{(Râ‚‘ + h)^2 }`

m will cancel from both sides hence 

gâ‚• = `\frac {G Mâ‚‘}{(Râ‚‘ + h)^2 }`

or

(Râ‚‘ + h)² = `\frac {G Mâ‚‘}{gâ‚• }`

taking square root on both sides

`\sqrt {(Râ‚‘ + h)^2}` = `\sqrt \frac {G Mâ‚‘}{gâ‚• }`

(Râ‚‘ + h) = `\sqrt \frac {G Mâ‚‘}{gâ‚• }`

h = `\sqrt \frac {G Mâ‚‘}{gâ‚• }` - Râ‚‘

By putting values

h = `\sqrt \frac {6.67 x 10⁻¹¹ N m² kg⁻² x 6 x 10²⁴ kg}{0.25 m s⁻²}` - 6.4 x 10⁶ m

h = `\sqrt \frac {6.67 ï½˜ 6x 10⁻¹¹⁺²⁴ m²}{0.25}` - 6.4 x 10⁶ m

h = `\sqrt \frac {17.79x 10¹³ m²}{1}` - 6.4 x 10⁶ m

h = `\sqrt \frac {177.9x 10¹² m²}{1}` - 6.4 x 10⁶ m

h = 13.3 ï½˜ 10⁶ m  - 6.4 x 10⁶ m

or

h = 6.9 ï½˜ 10⁶ m

At this height of one Earth's Radius i.e. 6.9 ï½˜ 10⁶ m) above  the surface of the earth the value of gravitational acceleration becomes one-fourth than on the surface of the Earth

************************************

************************************


Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2020-21 Academic Skills and Knowledge (ASK    

Note:  Write me in the comments box below for any query and also Share this information with your class-fellows and friends.