At what altitude the value of g would become one fourth than on the surface of the Earth? Ans. (One Earth's radius)


Given:  

Gravitational  acceleration on the surface of the Earth = g =  10 ms² 

Value of  Gravitational  acceleration at height h = gₕ 
g4g4 = 10ms²4= 0.25 m s²

∴ Mass of the Earth = Mₑ = 6 x 10²⁴ kg
∴ Radius of the Earth = R = 6.4 x 10⁶ m
∴ Gravitational Constant = G = 6.67 x 10⁻¹¹N m² kg⁻²



To Find:
height above the Earth = h = ? meters



Solution:   

Let a body of mass m is placed at height h where the value of gₕ becomes one-fourth than on the surface of the Earth
 So The distance between the centres of the body and the Earth = r = (
Rₑ + h)

According to the Law of Gravitation's, we have 

F GmM(R+h)2   -----eqn (1)

But according to the 2nd law of Newton

= W = mgₕ ----eqn (2)

By comparing these two Eqns 1 & 2 we have 

mgₕ = GmM(R+h)2

m will cancel from both sides hence 

gₕ = GM(R+h)2

or

(Rₑ + h)² = GMg

taking square root on both sides

(R+h)2 = GMg

(Rₑ + h) = GMg

h = GMgRₑ

By putting values

h = 6.6710¹¹Nm²kg²610²kg0.25ms² - 6.4 x 10⁶ m

h = 6.67 610¹¹² m²0.25 - 6.4 x 10⁶ m

h = 17.7910¹³ m²1 - 6.4 x 10⁶ m

h = 177.910¹² m²1 - 6.4 x 10⁶ m

h = 13.3 x 10⁶ m  - 6.4 x 10⁶ m

or

h = 6.9 x 10⁶ m

At this height of one Earth's Radius i.e. 6.9 x 10⁶ m) above  the surface of the earth the value of gravitational acceleration becomes one-fourth than on the surface of the Earth

************************************

************************************


Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2020-21 Academic Skills and Knowledge (ASK    

Note:  Write me in the comments box below for any query and also Share this information with your class-fellows and friends.