Calculate the value of g at a height of 3600 km above the surface of the Earth. Ans. (4.0 ms⁻²) 


Given:  

Height above the Earth's Surface = h = 3600 km = 3.6 x 10³x 10³ m = 3.6 x 10⁶ m

∴ Mass of the Earth = Mₑ = 6 x 10²⁴ kg
∴ Radius of the Earth = R = 6.4 x 10⁶ m
∴ Gravitational Constant = `\G` = 6.67 x 10⁻¹¹N m² kg⁻²


To Find:
Value of  Gravitational acceleration at height 3600 km above the Earth's surface = g =  ? m s²



Solution:   

Let a body of mass m is placed at height h above the surface of the Earth So The distance between the centres of the body and the Earth = r = (Rₑ + h)

According to the Law of Gravitation's, we have 

F `\frac {G m Mₑ}{(Rₑ + h)^2 }`   -----eqn (1)

But according to the 2nd law of Newton

= W = mg ----eqn (2)

By comparing these two Eqns 1 & 2 we have 

mg = `\frac {G m Mₑ}{(Rₑ + h)^2 }`

will cancel from both sides hence  

g = `\frac {G Mₑ}{(Rₑ + h)^2 }`

putting values

g `\frac {6.67 x 10⁻¹¹N m² kg⁻² x 6 x 10²⁴ kg}{(3.6 x 10⁶ m + 6.4x 10⁶ m)^2 }`

g `\frac {6.67 x 10⁻¹¹N m² kg⁻² x 6 x 10²⁴ kg}{(10x 10⁶ m)^2 }`

g `\frac {6.67 x 10⁻¹¹N m² Kg⁻² x 6 x 10²⁴ kg}{(100x 10¹² m^2 }`

g `\frac {6.67 x 6}{100}`x 10⁻¹¹⁺²⁴⁻¹² m s⁻²

by simplifying we get

g = 0.4003x 10¹ m s²

g = 4.003x 10¹ x 10¹ m s²

g 4.003x 10⁻¹⁺¹ m s²

or
g 4.00310 m s²

g = 4.0 m s²

Thus, the gravitational acceleration g on the above surface of Earth at height 3600 Km is 4.0 ms²

************************************

************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2020-21 Academic Skills and Knowledge (ASK    

Note:  Write me in the comments box below for any query and also Share this information with your class-fellows and friends.