Two capacitors of capacitances 6 µF and 12 µF are connected in series with 12 V battery. Find the equivalent capacitance of the combination. Find the charge and the potential difference across each capacitor. Ans. (4 µF, 48 µC, 8 V, 4 V)




Data Given:


Capacitance of capacitor 1 = C₁ =6 µF = 6 𝐱 10⁻⁶ F 

Capacitance of capacitor 2 = C₂ =12 µF = 12 𝐱 10⁻⁶ F
 
Potential Difference (Voltage) = V = 12 V 



To Find:


(1) Equivalent Capacitor = Cₑ = ?  
 
(2) Charge on each Capacitor = Q = ?

(3) Potential Difference (Voltage) across capacitor 1 = V = ? 

(4) Potential Difference (Voltage) across capacitor 2 = V = ?   




Solution:


(1) Equivalent Capacitor = Cₑ = ?  

We have the formula Equivalent capacitor connected in series as 

1C = 1C + 1C

Now by putting the values

1C 1610F + 11210F

1C = 2+11210 F

1C = 31210 F

or

C = 12103 F

Cₑ = 4 𝐱 10⁻⁶ F = µF ---------------Ans. 1


--------------------------------------------


(2) Charge on each Capacitor = Q = ?


We know that

Q = CV

Q = 4 𝐱 10⁻⁶ F  12 V

Q = 48  10⁻⁶ C

Q = 48 µC    -------------------------Ans. 2



--------------------------------------------


(3) Potential Difference (Voltage) across capacitor 1 = V = ?


We have

Q = CV

or

V₁ QC

by putting values

V 4810C610F

V₁ = 8 V  -----------------------------Ans. 3


--------------------------------------------


(4) Potential Difference (Voltage) across capacitor 2 = V = ?  

We have

Q = CV

or

V QC

by putting values

V = 4810C1210F

V = 4 V  ----------------------Ans. 4

************************************

************************************


Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2020-21 Academic Skills and Knowledge (ASK    

Note:  Write me in the comments box below for any query and also Share this information with your class-fellows and friends.