A steel wire of cross-sectional area 2x10⁻⁵ m² is stretched through 2 mm by a force of 4000 N. Find Young's modulus of the wire. The length of the wire is 2 m. Ans. (2 x 10¹¹ Nm⁻²)


Given:

Cross-Sectional Area of the Steel Wire = A = 2 x10⁻⁵ m²
Change in length after stretching by force = ΔL = 2mm = 2 x10⁻³ m
Force exerted  = F 4000 N
Original Length of steel wire  = Lₒ = 2 m

To Find:

Young's modulus of the wire = Y = ?

Solution:

As we have the formula for Young's modulus

Y = `\frac {F x L}{A x ΔL}` 

by putting values

Y = `\frac {4000 N x 2 m}{2 x10⁻⁵ m² x 2 x10⁻³ m}` 

Y = `\frac {2000 N}{10⁻⁵⁻³ m²}` 

Y = `\frac {2 x10³ N}{10⁻⁸ m²}` 

Y = 2 x10³⁺⁸ N m⁻² 

Y = 2 x10¹¹ N m⁻² 

Thus Young's modulus of the wire is 2 x10¹¹ N m⁻² 

************************************
************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2020-21 Academic Skills and Knowledge (ASK    

Note:  Write me in the comments box below for any query and also Share this information with your class-fellows and friends.