Vector `\vec {F}` having magnitude 5.5 N makes 10° with x-xis and vector `\vec {r}` with magnitude 4.3 m makes 80°with x-xis. What is the magnitude of the dot and cross products?

(Ans. 8.1 Nm and 22.2 Nm)


Given:

Vector `\vec {F}` having magnitude 5.5 N makes 10° with x-xis
Vector `\vec {r}` with magnitude 4.3 m makes 80°with x-xis
Hence the angle between two vector = θ =  80° - 10° = 7
 

To Find:

|`\vec {F}` . `\vec {r}`|= ?
|`\vec {F}` x `\vec {r}`|= ?

Solution:

We know that the dot product of two vectors is

|`\vec {F}` . `\vec {r}`|= F r cos θ 

by putting values

|`\vec {F}` . `\vec {r}`|5.5 N x 4.3 m  cos 7 

|`\vec {F}` . `\vec {r}`|5.5 N x 4.3 m  0.342

|`\vec {F}` . `\vec {r}`|= 8.08 N m

|`\vec {F}` . `\vec {r}`|8.1 N m -------------Ans. 1


And the cross-product of two vectors is

|`\vec {F}` x `\vec {r}`|= F r sin θ 

by putting values

|`\vec {F}` x `\vec {r}`|5.5 N x 4.3 m  sin 7 

|`\vec {F}` x `\vec {r}`|5.5 N x 4.3 m  0.940

|`\vec {F}` x `\vec {r}`|= 22.2 N m -------------Ans. 2


************************************

************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.