Water travels through a 9.6 cm diameter fire hose with a speed of 1.3 m/s. At the end of the hose, the water flows out through a nozzle whose diameter is 2.5 cm. (a) What is the speed of the water coming out of the nozzle? (b) What diameter nozzle is required to give a water speed of 21 m/s? ((a)19 m/s, (b) 2.4 cm) 


Given:

Diameter of fire hose = d₁ = 9.6 cm = 0.096 m
Speed of water at the fire hose = v₁ = 1.3 m s⁻¹
Diameter of nozzle = d₂ = 2.5 cm = 0.025 m

To Find:

(a) Speed of water at nozzle = v = ?
(b) Diameter of nozzle = d₂ = ? when the water speed = v₂ = 21 m s⁻¹

Solution:

(a) Speed of water at nozzle = v = ?


Using the equation of continuity i.e.

`\frac {v₂}{v₁}`  = `\frac {A₁}{A₂}` 

Where A₁ = 𝜋 r₁² and A₂ = 𝜋 r₂² so,

`\frac {v₂}{v₁}`  = `\frac { π r₁²}{ π r₂²}`

v = v₁ `\frac {r₁²}{r₂²}`

v = v₁ `\frac {(d₁/2)²}{(d₂/2)²}`      [r = d/2 and r = d/2]

or

v = v₁ `\frac {d₁²}{d₂²}`

v = v₁ (`\frac {d₁}{d₂}`)² ---------------(1)

by putting values 

v = v1 `\frac {(0.096 m)²}{(0.025 m)²}`

v = 1.3 m s⁻¹x `\frac {0.009216 m²}{0.000625 m²}`

v = 1.3 m s⁻¹x 14.7456

v = 19.16928 m s⁻¹

or

v = 19 m s⁻¹ ----------Ans.


(b) Diameter of nozzle = d = ? when the water speed = v = 21 m s⁻¹


Using the equation of  continuity

v₂ = v₁ (`\frac {d1}{d₂}`)²

or

d = d₁`\sqrt frac {v₁}{v₂}`

by putting values 

d = 0.096 m `\sqrt frac {1.3 m s⁻¹}{21 m s⁻¹}`

d2 = 0.096 m x `\sqrt {0.0619}`

d = 0.096 m x 0.2488

d₂ 0.02388 m

or

d = 2.4 m---------------Ans.


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.