Charges 2 µC, -3 µC, and 4 µC are placed in the air at the vertices of an equilateral triangle of sides 10 cm. What is the magnitude of the resultant force acting on a 4 µC charge? (Answer 15.7 N) 



Given:

Let 

1st charge = q₁ = 2 µC = 2 x 10⁻⁶ C 

2nd charge = q₂ = -3 µC = -3 x 10⁻⁶ C 

3rd charge = q₃ = 4 µC = 4 x 10⁻⁶ C 

Separation distance = r = 10 cm = 0.1 m


∴ Coulomb's Constant = K = `\frac {1}{4ㄫε_0}` = 9 x 10⁹ Nm²C⁻²

To Find:

The magnitude of the resultant force acting on q₃  = F = ?

Solution:

The diagram can be drawn according to the given conditions are  as below



Where F
 is the force of repulsions between charges q₁ and q₃ (as both are +ve charges) and F is the force of attractions between charges q₂ and q₃ (as q₂ is -ve and q₃ is +ve charge)


F cos 60° and Fcos 60° are the horizontal X-components of the force F and F respectively. Similarly F sin 60° and F₂ sin 60° are the vertical y-component of the force F and F respectively


Here we will first calculate 
F, the force of repulsion between charges q₁ and q₃ So using coulomb's Law formula


F = `\frac {1}{4ㄫε_0}``\frac {q₁q₃}{r^2}`

by putting values

F= 9 x 10⁹ Nm²C⁻² x `\frac {2 x 10⁻⁶ C x 4 x 10⁻⁶ C }{(0.1 m)^2}`


F= 9 x 10⁹ Nm²C⁻² x `\frac {8 x 10⁻¹² C}{0.01 m^2}`


F = `\frac {72 x 10⁹⁻¹² Nm²}{0.01 m^2}`


F = `\frac {72 x 10⁻³ Nm²}{0.01 m^2}`


F = 7200 x 10⁻³ N


F = 7.2 N ---------------(1).


and


F, the force of attraction between charges q₂ and q₃ So using coulomb's Law formula again


F = `\frac {1}{4ㄫε_0}``\frac {q₂q₃}{r^2}`

by putting values

F = 9 x 10⁹ Nm²C⁻² x `\frac {-3 x 10⁻⁶ C x 4 x 10⁻⁶ C }{(0.1 m)^2}`


F = 9 x 10⁹ Nm²C⁻² x `\frac {-12 x 10⁻¹² C}{0.01 m^2}`


F₂ = - `\frac {108 x 10⁹⁻¹² Nm²}{0.01 m^2}`


F = -`\frac {108 x 10⁻³ Nm²}{0.01 m^2}`


F = -10800 x 10⁻³ N


F = -10.80 N ---------------(2).

The -ve sign just shows that it is an attraction force.


The resultant force F can be found by the formula 

F = `\sqrt {Fx^2 + Fy^2 }` ------------(3)


where  
Fx = Fx + Fx  and Fy = Fy + Fy

Fx = F cos 60° + F₂ cos 60°

Fx = 7.2 N x 0.5  + (-10.80 N )  0.5

Fx = 3.6 N + (-5.4 N )

Fx = -1.8 N ------------------(4)

and 

Fy = F sin 60° - F₂ sin 60°  (opposite in direction)

Fy = 7.2 N x 0.866  - (-10.80 N )  0.866

Fy = 6.235 N + 9.353 N

Fy = 15.588 N --------------(5)

Putting Eqn (4)and (5) in eqn (3) we have

F = `\sqrt {Fx^2 + Fy^2 }`

F = `\sqrt {(-1.8 N)^2 + (15.588 N)^2 }`

F = `\sqrt {3.24N^2 + 242.986 N^2 }`

F = `\sqrt {246.226 N^2 }`

F = 15.693 N 

F = 15.7 N ------------------------Ans.

Thus the magnitude of the resultant force acting on q₃ is 15.7 N


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.