The voltage across a 0.01 µF capacitor is 240 sin (1.25 x 10⁴ t - 30°) V. Write the mathematical expression for the current through it. 

Ans (I = 0.03 sin(1.25 x 10⁴ t + 60°) A)



Data Given:

Capacitance of capacitor = C = 0.01 μ F = 0.01 x10⁻⁶ F

Instantaneous Voltage across the  capacitor  VCVC240 sin (1.25 x 10⁴ t - 30°


To Find:


Mathematical Expression for the Current in a capacitor = ICIC = ?

Solution:

The general formula for instantaneous Voltage

VCVCVmaxVmax sin ယ t --------------(1)

Given Formula is

VCVC 240 sin (1.25 x 10⁴ t - 30°  ------------(2)


By Comparing both equations (1) and (2) we have the following values


Peak Value Voltage = VmaxVmax = 240 V 

Angular frequency = ယ = 1.25 x 10⁴ rad s⁻¹

ф = 30°



The equation for instantaneous Current ImaxImax in capacitor is

ICIC = ImaxImax sin ( t - ф + 90°)  ---------(3)

Where

ImaxImax = VmaxXCVmaxXC 

but XCXC = 1C

Hence

Imax = Vmax ယC 

putting the Imax = Vmax ယC  in equation (3)

IC = Vmax ယC  sin ( t - ф + 90°

now putting the corresponding values

IC = 240 V x 1.25 x 10⁴ rad s⁻¹x 0.01 x 10⁻⁶ x sin (1.25 x 10⁴ rad s⁻¹ t - 30° + 90°

or 

IC = 0.03  x sin (1.25 x 10⁴ rad s⁻¹ t + 60°) A

or 

I = 0.03 sin (1.25 x 10⁴ t + 60°) A -------------Ans.
Hence the required mathematical relation for current in a capacitor. 


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.