A cable has an un-stretched length of 12 m and it stretches by 1.2 x 10⁻⁴ m when a stress of 6.4  10⁸ Nm² is applied. What is the strain energy per unit volume in the cable when this stress is applied? Answer (3.2 x 10³  Jm⁻³



Given Data:

Length of un-stretched cable = L =  12 m 

Change in Length = ΔL = 1.2x10⁻⁴ m

Stress =  6.4x10⁸ N m⁻²


To Find:

Strain Energy per unit Volume = ?



Solution:


Strain Energy per unit Volume can be calculated as

Strain Energy per unit Volume = `\frac{1}{2}`x Stress x strain

Strain Energy per unit Volume = `\frac{1}{2}` x Stressx `\frac{ΔL}{L}`

by putting values

Strain Energy per unit Volume = `\frac{1}{2}` x 6.4x10⁸ N m⁻² x `\frac{1.2x10⁻⁴ m}{12 m}`

Strain Energy per unit Volume = `\frac{7.68 x10⁴ N m⁻² }{24}`


Strain Energy per unit Volume = 0.32 x10⁴ N m⁻² 


Strain Energy per unit Volume = 3.2 x10³ J m³ -------Ans.

 


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.