A rope is wrapped several times around a cylinder of radius 0.2 m and mass 30 kg. What is the angular acceleration of the cylinder if the tension in the rope is 40 N and it turns without friction? (13.3 rad s⁻²)

Given:

Radius of the cylinder = r = 0.2 m
Mass of the cylinder = m = 30 kg
Tension in the rope = T = F= 40 N

To Find:

Angular acceleration = 𝛂 = ?

Solution:

The formula for Angular acceleration in terms of the moment of inertia and torque (τis

𝛂 = `\frac {τ}{I}` --------------(1)

So we have to find first the torque τ and moment of inertia I from the given data

Torque τ = r F = 0.2 m x 40 N = 8 Nm

Moment of inertia of the cylinder

I = `\frac {1}{2}`mr² = `\frac {1}{2}` x 30 kg x (0.2 m)² 

I = 15 kg x 0.04 m² = 0.6 kg m²

By putting values in equation (1) we have

𝛂 = `\frac {τ}{I}`

𝛂 = `\frac {8 Nm}{0.6 kg m²}`

𝛂 = 13.3 rad s⁻¹ --------------Ans.



************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.