Find the amplitude, frequency and time period of an object oscillating at the end of a spring, if the equation for its position at any instant given by x = 0.25 cos`(\ frac {Ï€}{8})` t . Find the displacement of the object after 2 s. (0.25 m, `\ frac {1}{16}`Hz, 0.18 m)
To Find:
Solution:
But generally, a displacement for an object executing Simple Harmonic Motion (SHM) is given by an equation
x = x₀ cos à´§t ---------------------(2)
So by comparing the corresponding values of both of equations (1) and (2) we get
x₀ = Amplitude = 0.25 m-------------- Ans (1)
and
à´§ = `\frac {Ï€}{8}` ---------------- (3)
-------------------------------------------------------
So to find frequency f we know
ധ = 2πf ஃ[`\frac {2π}{T}` and f = `\ frac {1}{T}` ]
or
f = `\frac {à´§ }{2Ï€}`
using equation (3)
f = `\frac {Ï€/8}{2Ï€}`
OR
f = `\frac {1}{16}` Hz ----------------------Ans. (2)
-------------------------------------------------------
ஃTime period and Frequency are related inversely i.e. [ T = `\ frac {1}{f}` ]
So
T = `\frac {1}{(1/16) Hz}`
or
T = 16 s ----------------Ans. (iii)
-------------------------------------------------------
Now to find displacement x after time t = 2s
Putting the corresponding values in equation (2) i.e.
x = x₀ cos à´§t
x = 0.25 m x cos (`\frac {π}{8}` x 2)
x = 0.25 m x cos `\frac {π}{4}`
x = 0.25 m x cos 45°
x = 0.25 m x 0.707
x = 0.177 m
0r
x = 0.18 m ---------------------Ans.(4)
************************************
0 Comments
If you have any QUESTIONs or DOUBTS, Please! let me know in the comments box or by WhatsApp 03339719149