A 800 g body vibrates S.H.M with amplitude 0.30 m. The restoring force is 60 N and the displacement is 0.30 m. Find out (1) T (ii) `\vec a` (iii) `\vec v` (iv) K.E (v) P.E when the displacement is 12cm.
(i) T = 1.3 s (ii) `\vec a` = 3 m s⁻² (iii) `\vec v` = 1.4 m s `\vec v` (iv) K.E = 7.6 J (v) PE = 1.44 J)


Given:

Mass of the body = m  = 800 g = 0.8 kg

Amplitude = x₀ = 0.30 m

Force (restoring)  = `\F_r`  = 60 N 

Displacement = x = 0.30 m


To Find:

(1) Time Period == ? 
(ii) acceleration = `\vec a` = ? when the displacement = x = 12cm = 0.12 m
(iii)  speed = `\vec v` = ? 
(iv) K.E = ? when the displacement = x = 12cm = 0.12 m
(v) P.E  = ? when the displacement = x = 12cm = 0.12 m


Solution:


(1) Time Period = T = ? by using x = 0.3 m

The general formula for Time Period of a mass attached to spring is 

T = 2Ï€ `\sqrt frac{m}{k}`

Here we have find first the value of spring constant due to mas of the block m₁. So by using Hook's Law

`\F_r` = k x

or

k = `\frac {F_r}{x}` 

by putting values

k `\frac {60 N}{0.30 m}`

k =  200 N m⁻¹ 


Now the Time period is 

= 2Ï€ `\sqrt frac{m}{k}`

by putting values 

= 2Ï€ `\sqrt frac{0.80 kg}{200 N m⁻¹}`

= 2 ï½˜ 3.1416 ï½˜ `\sqrt {0.004 s²}`

= 6.283 ï½˜ 0.063 s

= 0.397 s

or

= 0.4 s ------------------Ans.(i)

( NOTE:  The Answer shown in the book T = 1.3 s can be only obtained if we use `\F_r`  = 6 N thus obtaining K = 20 Nm⁻¹ ).



(ii) acceleration = `\vec a` = ? when the displacement = x = 12cm = 0.12 m

According to the Hook's Law

F = k x

and Newton Second law

F = m`\vec a`

by comparing we get  

m`\vec a` = kx

or

`\vec a` = `\frac {kx}{m}`

by putting values

`\vec a``\frac {200 N m⁻¹ x 0.12 m}{0.8 kg}`

`\vec a` =  30 m s⁻² ---------------Ans(ii)

( NOTE:  The Answer shown in the book a = 3.0 s can be only obtained if we use `\F_r`  = 6 N thus obtaining K = 20 Nm⁻¹ ).



(iii)  speed = `\vec v` = ? 

We know that 

v = à´§ `\sqrt {x₀^2 - x^2}`


where à´§ = `\frac {2Ï€}{T}`

by putting values

ധ = `\frac {2 x 3.1416}{1.3 s}`

à´§ = 4.8 rad s⁻¹  ----------------Ans(iii)

so, 

v = à´§ `\sqrt {x₀^2 - x^2}`

by putting values

v = 4.8 rad s⁻¹ ï½˜ `\sqrt {(0.30m)^2 - (0.12 m)^2}`

v = 4.8 rad s⁻¹ ï½˜ `\sqrt {0.0756 m^2}`

v = 4.8 rad s⁻¹ ï½˜ 0.275

v = 1.319 m s⁻¹ ----------------------Ans. (iii)



(iv) K.E = ? when the displacement = x = 12cm = 0.12 m


The formula for K.E. is

K.E = `\frac{1}{2}` k `(x₀^2 - x^2)`

by putting values 

K.E = `\frac{1}{2}`x 200 N m⁻¹ï½˜`\((0.30m)^2 - (0.12 m)^2)`

K.E =  100 N m⁻¹  ï½˜ `\0.0756 m^2`

K.E = 7.56 J -----------------------Ans (iv)



(v) P.E  = ? when the displacement = x = 12cm = 0.12 m

P.E = `\frac{1}{2}` k `\x^2`

putting values

P.E = `\frac{1}{2}` 200 N m⁻¹ `\(0.12 m)^2`

P.E = 100 N m⁻¹ ï½˜ 0.0144 m²

P.E 1.44 J



************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.