On a sunny day, the sound in the air is 340 m s⁻¹, and 2 tuning forks A & B are sounded simultaneously.  The wavelength of the sounds emitted is 1.5 m and 1.68 m respectively. How many beats will produce per second? (24 beats approx.) 



Given:

Speed of the sound on a sunny day = v = 340 m s⁻¹
Wavelength of tuning fork A = λ₁ = 1.5 m
Wavelength of tuning fork B = Î»₂ = 1.68 Hz

To Find:

The number of beats  = N = ?

Solution:

The number of beats is equal to the difference in frequencies of the two sources (tuning forks), So, we have to find first the frequencies of both tuning forks A & B


The frequency of tuning fork A = f = `\frac {v}{λ₁}`


f = `\frac {340 m s⁻¹}{1.5 m}`

f = 226.7 Hz

and the frequency of tuning fork B = f = `\frac {v}{λ₁}`


f = `\frac {340 m s⁻¹}{1.68 m}`

f = 202.4 Hz

Now the number of beats

N f - f₂ = 226.7 Hz - 202.4 Hz = 24.3 beats 

N = 24 beats. ---------------Ans,




************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.