An electron drops from the second energy level to the first energy level within an excited hydrogen atom (a) determine the energy of the photon emitted (b) calculate the frequency of the photon emitted (c) calculate the wavelength of the photon emitted. (Answer: (a) 10.2 eV (b) 2.5 x 10¹⁵ Hz (c) 120 nm) 



Given Data:

 Atom: Hydrogen

Excited state = n = 2

Lower state = p = 1


To Find:

(a) Energy of the photon emitted = E  ?

(b) Frequency of the photon emitted f  ?

(c) Wavelength of the photon emitted = λ ?



Solution:


(a) Energy of the photon emitted E  ?

The energy of the photon emitted is given by:

E = En - Ep -------------(1)




Where En is the energy of an electron in an excited state and Ep is the energy of an electron in the lowest state.


En = -E0n2


Where E0 = constant = 13.6 eV and n = 2 So,




En = - 13.6eV22


En = - 13.6eV4


En = - 3.4 eV


and


Ep = -E0p2


Where E0 = constant = 13.6 eV and p = 1 So,




Ep = - 13.6eV12


Ep = - 13.6eV1


Ep = - 13.6 eV


Now putting values in Equation (1)

E En - Ep  = - 3.4 eV - (- 13.6 eV ) = 10.2 eV

E = 10.2 eV -------------------Ans.1



(b) Frequency of the photon emitted f  ?

We know that 

E = hf

or 

 f Eh

By putting values of E = 10.2 eV = 10.2 x 1.6 x 10⁻¹⁹ J and Plank's Constant = h =  6.62 x 10⁻³⁴ m² kg s⁻¹

 f 10.21.610¹J6.6210³m²kgs¹

By simplifying we get 

f 2.46 x 10¹⁵ Hz -------------------Ans.2


(c) Wavelength of the photon emitted λ =  ?

we know that v = f λ, where v = c = 3 x 10⁸ m s⁻¹

or

λ = 310ms¹2.4610¹Hz

λ = 1.219 x 10⁻⁷ m 

or

λ = 121.9 x 10⁻⁹ m 

λ = 121.9  nm ------------------Ans.3




************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.