Find the energy of the photon in
(a) Radio wave of wavelength 100m
(b) Green light of wavelength 550nm
(c) X-ray with wavelength 0.2nm.

[Ans. (a)1.24 x 10⁻⁸ eV, (b) 2.25 eV, (c) 6212 eV]



Given Data:

Let

(a) Radio wave of wavelength = λ₁ = 100 m

(b) Green light of wavelength 
= λ₂ = 550 nm = 550x 10⁻⁹ m

(c) X-ray with wavelength 
= λ₃ = 0.2 nm = 0.2x 10⁻⁹ m

∴ Plank's Constant = h =  6.626 x 10⁻³⁴ m² kg s⁻¹

∴ Speed of light = 3 x 10⁸ m s⁻¹


To Find:

(a) Energy of photon in Radio wave = `E_1`  ? 

(b) Energy of photon in Greenlight = `E_2`  ? 

(c) Energy of photon in X-ray = `E_3`  ? 




>

Solution:


We know that 

E = hf 

where f = `\frac {c}{λ}` So,

E = `\frac {hc}{λ}` -------------(1)



(a) Energy of photon in Radio wave = `E_1`  ? 

Using equation (1)

`E_1` `\frac {hc}{λ₁}`

By putting the corresponding values

`E_1` `\frac {6.626 x 10⁻³⁴ m² kg s⁻¹ x3 x 10⁸ m s⁻¹}{100 m}`

`E_1` `\frac {19.878 x 10⁻²⁴ m³ kg s⁻² }{100 m}`

`E_1` = 0.19878 x 10⁻²⁴ J

by expressing in electron Volts (eV) we have  1 eV = 1.6 x 10⁻¹⁹ J ] So, by using the unitary method we have

`E_1` = `\frac {0.19878 x 10⁻²⁴ }{1.6 x 10⁻¹⁹ }` eV

`E_1` = 1.24 x 10⁻⁸ eV   --------------Ans.1


(b) Energy of photon in Greenlight = `E_2`  ? 

Using equation (1)

`E_2` `\frac {hc}{λ₁}`

By putting the corresponding values

`E_2` `\frac {6.626 x 10⁻³⁴ m² kg s⁻¹ x3 x 10⁸ m s⁻¹}{550x 10⁻⁹ m}`

`E_2` `\frac {19.878 x 10⁻²⁴ m³ kg s⁻² }{550x 10⁻⁹ m}`

`E_2` = 0.03614 x 10⁻¹⁷ J

by expressing in electron Volts (eV) we have  1 eV = 1.6 x 10⁻¹⁹ J ] So, by using the unitary method we have

`E_2` = `\frac {0.03614 x 10⁻¹⁷ }{1.6 x 10⁻¹⁹ }` eV

`E_2` = 0.0225 x 10² eV

or

`E_2` = 2.25  eV   --------------Ans.2



(c) Energy of photon in X-ray = `E_3`  ? 

Using equation (1)

`E_3` `\frac {hc}{λ₁}`

By putting the corresponding values

`E_3` `\frac {6.626 x 10⁻³⁴ m² kg s⁻¹ x3 x 10⁸ m s⁻¹}{0.2x 10⁻⁹ m}`

`E_3` `\frac {19.878 x 10⁻²⁴ m³ kg s⁻² }{0.2x 10⁻⁹ m}`

`E_3` = 99.39 x 10⁻¹⁷ J

by expressing in electron Volts (eV) we have  1 eV = 1.6 x 10⁻¹⁹ J ] So, by using the unitary method we have

`E_3` = `\frac {99.39 x 10⁻¹⁷ }{1.6 x 10⁻¹⁹ }` eV

`E_3` = 62.119 x 10² eV

or

`E_3` = 6211.9  eV   --------------Ans.3




************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.