The mass of the nucleus is 13.999234u, calculate the binding energy. (Answer: 104.66 MeV)  



Given Data:


Mass of the Nucleus = m = 13.999234 u Shows it is a Nitrogen (N-14) Atom. So,


Atomic mass of helium = A = 14

Atomic number of helium = z = 7


Mass of 
Proton = `\m_p` = 1.00728 u

Mass of Neutron = `\m_n`= 1.00867 u





To Find:

Binding energy = B.E =?



Solution:


The formula for binding energy is

B.E. = Δmc², 


Where Î”m should be in kg unit so, to find the mass defect Î”m we have

 Î”m = ( Z `\m_p` + (A - Z)`\m_n` ) - m

by putting the corresponding values

 Î” m = ( 7 x 1.00728 u + (14 - 7) ï½˜1.00867 u  - 13.999234 u


 Î” m = 7.05096 u + 7.06069 u - 13.999234 u


Δ m = 0.112416 u


Now To Find the Binding energy = B.E =?


We know that  1 amu = 931.5 MeV so,


Binding Energy = B.EMass deficit (in amu) ×  931.5 MeV


Binding Energy = B.E0.112416 u ×  931.5 MeV

B.E = 104.715504 MeV -----------------------Ans.2




************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.