A proton moving with the speed of 1.0 x10⁷ m s⁻¹ passes through a 0.02 cm thick sheet of paper and emerges with speed of 2 x10⁶ m s⁻¹. Assuming uniform deceleration, find retardation and time taken to pass through the paper. Ans. (2.4 x 10¹⁷m s⁻², 3.3 x 10⁻¹¹s ) 



Given:


Initial Velocity = `\vec v_i` = 1.0 x10⁷ m s⁻¹

Final Velocity = `\vec v_i` = 2.0 x10⁶ m s⁻¹

Distance = S = 0.02 cm = 0.0002 m =2.0 x10 m



To Find:

Retardation (deceleration) = a = ?

Time taken to pass the paper = t = ?

Solution:

Using 3rd equation of motion

2aS = `\vec v_i^2` - `\vec v_f^2`

by putting the corresponding values

2a x 2.0 x10⁻⁴ m = `\(2.0 x10⁶ m s⁻¹)^2` - `\ (1.0 x10⁷ m s⁻¹)^2`

a x 4.0 x10⁻⁴ m = 4 x10¹² m² s⁻² - 1.0 x10¹⁴ m² s⁻²

a x 4.0 x10⁻⁴ m = 0.04 x10¹⁴ m² s⁻² - 1.0 x10¹⁴ m² s⁻²

a x 4.0 x10⁻⁴ m = - 0.96 x10¹⁴ m² s⁻²

a = `\frac {- 0.96 x10¹⁴ m² s⁻² }{4.0 x10⁻⁴ m}`

a  = -0.24 x10¹⁸ m s²

or

= -2.4  10¹⁷ m s²  ------------------Ans. (1)


Now using 1st equation of motion to find the time t

`\vec v_f^2` = `\vec v_i^2` + at

or

t = `\frac {vec v_f^2 - vec v_i^2}{a}`

by putting the corresponding values

t = `\frac { 2.0 x10⁶ m s⁻¹ - 1.0 x10⁷ m s⁻¹}{-2.4 x 10¹⁷}`

t = `\frac { 0.2 x10⁷ m s⁻¹ - 1.0 x10⁷ m s⁻¹}{-2.4 x 10¹⁷}`

t = `\frac { - 0.8 x10⁷ m s⁻¹}{-2.4 x 10¹⁷}`

t =  0.333 x10¹⁰ s

or

t =  3.33 x10⁻¹¹ s  ---------------Ans (2)


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.