An electron (m = 9.1 x 10⁻³¹ kg) traveling at 2 x 10⁷ m s⁻¹ undergoes a head on collision with a hydrogen atom (m = 1.67 x 10⁻²⁷kg), which is initially at rest. Assume the collision to be perfectly elastic and motion to be a straight line, find the velocity of hydrogen atom. 

(Ans: 2.2 x 10⁴ m s⁻¹)



Given:

Mass of electron = m₁ = 9.1 x 10³¹ kg

Initial velocity of electron = v₁ = 2 x 10⁷ m s⁻¹

Mass of Hydrogen = m₂ = 1.67 x 10⁻²⁷kg

Initial velocity of Hydrogen = v₂ = 0 m s⁻¹ (at rest)


To Find:

Final velocity of Hydrogen = v₂' =  ?


Solution:


The formula to find Final velocity  v₂' of Hydrogen of mass m₂ is:

v₂' = `\frac {(m₂-m₁)v₂}{m₁+m₂}` + `\frac {2m₁v₁}{m₁+m₂}`

by putting values

v₂' = `\frac {(1.67 x 10⁻²⁷kg - 9.1 x 10⁻³¹ kg) (0 m s⁻¹)}{9.1 x 10⁻³¹ kg + 1.67 x 10⁻²⁷kg}` + `\frac {2 ï½˜ 9.1 x 10⁻³¹ kg x (2 x 10⁷ m s⁻¹) }{9.1 x 10⁻³¹ kg+ 1.67 x 10⁻²⁷kg}`

v₂' = 0 + 
`\frac {2 ï½˜ 9.1 x 10⁻³¹ kg x (2 x 10⁷ m s⁻¹) }{9.1 x 10⁻³¹ kg + 16700 x 10⁻³¹kg}`

v₂' = `\frac {36.4x 10⁻²⁴ kg m s⁻¹}{16709.1 x 10⁻³¹ kg }`

v₂' = 0.002178 ï½˜ 10⁷  m s⁻¹

or

v₂' = 2.178 
x 10⁴ m s⁻¹ -------------Ans.


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.