Consider the rotating cylinder shown in Fig 5.26. Suppose that m= 5 kg, F = 0.60 N, and r = 0.20 m. Calculate (a) the torque acting on the cylinder, and (b) the angular acceleration of the cylinder.
(Moment of inertia of cylinder = `\frac {1}{2}`mr² 
(Ans: 0.12 N, 12 rad s⁻¹)






Data Given:


m = 5.0 kg

F = 0.60 N

r = 0.20 m

θ = 90°

To Find:


(a) Torque acting on the cylinder  = `\vec T` = ?

(b) Angular Acceleration  =  = ?


Solution:


(a) Torque acting on the cylinder  = `\vec T` = ?

We know that 

`\vec T` = `\vec r` x`\vec F`

or

`\vec T` = r F sin Î¸

By putting values

`\vec T` = 0.20 m ï½˜ 0.60 N ï½˜ sin 90°

`\vec T` = 0.12 N m ï½˜ 1

`\vec T` = 0.12 N m  -------Ans. (1)


(b) Angular Acceleration  =  = ?

We know that 

T = `\I`

or

∝ `\frac {T}{I}`

where moment of inertia `\I`= `\frac {1}{2}` mr², So

∝ `\frac {2T}{mr²}`

putting values

∝ `\frac {2x0.12 Nm}{5.0 kg x(0.20 m)²}`

∝ `\frac {0.24 Nm}{5.0 kg x0.04 m²}`

∝ = `\frac {0.24 Nm}{0.20 kg m²}`

∝ = 1.20 rad s²}`



************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.