The moon orbits the Earth so that the same side always faces the Earth. Determine the ratio of its spin angular momentum (about its own axis) and its orbital angular momentum. (In this case, treat the Moon as a particle orbiting the Earth). Distance between the Earth and the Moon is 3.85 x10⁸ m. Radius of the Moon is 1.74 ï½˜10⁶ m. (Ans: 8.2 x10⁻⁶)



Data Given:

Distance between the Earth and the Moon = 
Radius of the moon's orbit = r = 3.85 x10⁸ m

Radius of the Moon  = `\R_m` = 1.74 x10⁶ m

To Find:

Ratio of spin angular momentum and orbital angular momentum = `\frac {vec {L_s}}{vec {L_o}}`  = ?


Solution:


Using formula for Moon Angular momentum (spin) `\vec {L_s}` in terms of angular velocity  à´§ and Moment of inertia `\I`

`\vec {L_s}` = `\I`à´§  

Where for sphere (moon), `\I` = 
`\frac {2M_nR_m^2}{5}`, Thus

`\vec {L_s}` = `\frac {2M_nR_m^2à´§}{5T}` -------(1)



Now using formula for Moon orbital momentum (spin) `\vec {L_o}` in terms of angular velocity  à´§ and Moment of inertia `\I`


`\vec {L_o}` = `\I`à´§  


Where for orbit (ring) `\I` = `\M_nr^2`, Thus
`\vec {L_o}` = `\M_nr^2`à´§  ---------(2)


Now dividing equation (1) by (2) we get


`\frac {vec {L_s}}{vec {L_o}}`  = `\frac {frac {2M_nR_m^2à´§}{5T}}{M_nr_m^2à´§}`


Or (by Simplifying)

`\frac {vec {L_s}}{vec {L_o}}`  = `\frac {2R_m^2}{5r^2}`

Putting the corresponding values

`\frac {vec {L_s}}{vec {L_o}}`  = 
`\frac {2(1.74 x10⁶ m)^2}{5 (3.85 x10⁸ m)^2}`

`\frac {vec {L_s}}{vec {L_o}}`  = `\frac {2(3.0276 x10¹² m^2)}{5 (14.8225 x10¹⁶ m^2)}`

`\frac {vec {L_s}}{vec {L_o}}` = `\frac {6.0552 x10¹² m^2}{74.1125 x10¹⁶ m^2}`

`\frac {vec {L_s}}{vec {L_o}}`  = 0.08170 ï½˜10⁻⁴

or

`\frac {vec {L_s}}{vec {L_o}}`  = 8.170 ï½˜10⁻

or

`\frac {vec {L_s}}{vec {L_o}}`  = 8.170 ï½˜10⁻⁶ -----Ans.



************************************


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.