The moon orbits the Earth so that the same side always faces the Earth. Determine the ratio of its spin angular momentum (about its own axis) and its orbital angular momentum. (In this case, treat the Moon as a particle orbiting the Earth). Distance between the Earth and the Moon is 3.85 x10⁸ m. Radius of the Moon is 1.74 x10⁶ m. (Ans: 8.2 x10⁻⁶)



Data Given:

Distance between the Earth and the Moon = 
Radius of the moon's orbit = r = 3.85 x10⁸ m

Radius of the Moon  = Rm = 1.74 x10⁶ m

To Find:

Ratio of spin angular momentum and orbital angular momentum = LsLo  = ?


Solution:


Using formula for Moon Angular momentum (spin) Ls in terms of angular velocity  ധ and Moment of inertia I

Ls = I  

Where for sphere (moon), I
2MnR2m5, Thus

Ls = 2MnR2m5T -------(1)



Now using formula for Moon orbital momentum (spin) Lo in terms of angular velocity  ധ and Moment of inertia I


Lo = I  


Where for orbit (ring) I = Mnr2, Thus
Lo = Mnr2ധ  ---------(2)


Now dividing equation (1) by (2) we get


LsLo  = 2MnR2m5TMnr2m


Or (by Simplifying)

LsLo  = 2R2m5r2

Putting the corresponding values

LsLo  = 
2(1.7410m)25(3.8510m)2

LsLo  = 2(3.027610¹²m2)5(14.822510¹m2)

LsLo = 6.055210¹²m274.112510¹m2

LsLo  = 0.08170 x10⁻⁴

or

LsLo  = 8.170 x10⁻

or

LsLo  = 8.170 x10⁻⁶ -----Ans.



************************************


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.