Certain globular protein particle has a density of 1246 Kg m⁻³ it falls through pure water (η = 8 x 10⁻⁴ N m⁻² s) with a terminal speed of 3 cm h⁻¹. Find the radius of the particle. (Ans: 1.6 x 10⁻⁶ m )



Data Given:


Density of particle = ⍴ = 1246 kg m⁻³

Viscosity = η = 8 x 10⁻⁴ N m⁻² s

Terminal speed = `\v_t` = 3 cm h⁻¹ = 3 x `\frac {10⁻²}{3600}`m s⁻¹ = 8.33 m s⁻¹

Value of g = 9.8 m s⁻²



To Find:


Radius of the particle  = r = ?


Solution:


By using the formula for terminal speed

vt = `\frac {2⍴gr^2}{9η}`

or

r`\sqrt frac {9ηv_t}{2⍴g}`


By putting the corresponding values

r = `\sqrt frac {9 x8 x 10⁻⁴ N m⁻² s x 8.33 m s⁻¹}{2 x 1246 kg m⁻³x 9.8 m s⁻²}`

r = `\sqrt frac {599.76 x 10⁻⁴ N m⁻¹}{24,421.6 kg m⁻² s⁻²}`

r = `\sqrt frac {599.76 x 10⁻⁴ N m⁻¹}{24,446.52 N m⁻³}`

r = `\sqrt {0.0245335532419338 x 10⁻⁴ m²}`

r = `\sqrt {2.453 x 10⁻⁶ m²}`

or

r = 1.566 x 10³ m  -----------Ans.

Hence the radius of the particle is 1.566 x 10³ m.




************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.