Numerical Problems 10.1: The time period of a simple pendulum is 2 s. What will be its length on the Earth? What will be its length on the Moon if gm = ge / 6?  where  ge = 10 msᐨ².   
Ans.(1.02 m, 0.17 m)

... 

Given Data:


Time Period = T = 2 s

Gravitational Acceleration on Earth = gₑ = 10 msᐨ²

Gravitational Acceleration on Moon = gₘ = gₑ / 6

so,

gₘ = 10 msᐨ² / 6 = 1.667 msᐨ²


Required:



Length of the pendulum on the Earth = l = ?

Length of the pendulum on the Moon = l = ?


Solution:


On the Earth:


Formula for Time Period of Pendulum on the Earth


T = 2 ㄫ `\sqrt frac{l_e}{g_e}`


By taking square both sides 


T² = 4 ㄫ² `\frac{l_e}{g_e}`


By Using basic mathematics rules,  we will separate 
l as


l `\frac{T² g_e}{4 ㄫ² }`


Now by putting values of each quantities    

l `\frac{(2)² x 10 msᐨ²}{4 x (3.1416)² }`


By simplifying we get

lₑ = 1.02 m -------------Ans.1

Thus, the length of the pendulum on the Earth ( lₑ ) for a fixed Time Period of 2S is 1.02 m  


On the Moon:

The formula for Time Period of Pendulum on the Moon

T = 2 ㄫ `\sqrt frac{l_m}{g_m}`


By taking square both side 


T² = 4 ㄫ² `\frac{l_m}{g_m}`


By Using basic mathematics rules,  we will separate 
l  as


l  `\frac{T² g_m}{4 ㄫ² }`


Now by putting values of each quantities    

lₘ `\frac{(2)² x 1.667 msᐨ²}{4 x (3.1416)² }`


By simplifying we get

l = 0.17 m --------------------Ans.2


Thus, the length of the pendulum on the Earth ( l) for a fixed Time Period of 2S is 0.17 m  






Numerical Problems 10.2: A pendulum of length 0.99 m is taken to the Moon by an astronaut. The period of the pendulum is 4.9 s. What is the value of g on the surface of the Moon? 
Ans. (1.63 msᐨ²)

... 

Given Data:

Length of the pendulum on the Moon = lₘ = 0.99 m
Time Period = T = 4.9 s

Required:

Gravitational Acceleration on Moon = gₘ = ?


Solution:


The formula for Time Period of Pendulum on the Moon


T = 2 ㄫ `\sqrt frac{l_m}{g_m}`


By taking square both side 

T² = 4 ㄫ² `\frac{l_m}{g_m}`

By Using basic mathematics rules,  we will separate g  as

g  `\frac{ 4 ㄫ² l_m}{T²}`


Now by putting values of each quantities

g  `\frac{ 4 (3.1416)² x 0.99 m}{(4.9 s)²}`


By solving, we get

gₘ  = 1.629 msᐨ² --------------Ans.

Thus, the Gravitational Acceleration of the pendulum on the surface of the Moon is 1.629 msᐨ² 





Numerical Problems 10.3: Find the time periods of a simple pendulum of 1 meter length, placed on Earth and on Moon. The value of g on the surface of Moon is 1/6th of its value on Earth, where ge is 10 msᐨ². 
Ans. (2 s, 4.9 s)

... 

Given Data:

Length of the pendulum l = 1 m

Value of gravitational Acceleration on Earth = g = 10 msᐨ² 

Value of gravitational Acceleration on Moon = gₘ = gₑ / 6 
= 10 msᐨ² / 6 = 1.667 msᐨ²

Required:

Time Period of the pendulum on the Earth = Tₑ = ?

Time Period  of the pendulum on the Moon =T = ?


Solution:


On the Earth:

Formula for Time Period of Pendulum on the Earth

T = 2 ㄫ `\sqrt frac{l}{g_e}`


Now by putting values of each quantities

T = 2 x 3.1416 x `\sqrt frac{1 m}{10 msᐨ² }`


By simplifying we get

T 2 s -----------------Ans.1

Time Period (Tₑof the pendulum on the Earth is 2 seconds

On the Moon:

The formula for Time Period of Pendulum on the Moon

T = 2 ㄫ `\sqrt frac{l}{g_m}`


Now by putting values of each quantities

Tₘ = 2 x 3.1416 x `\sqrt frac{1 m}{1.667 msᐨ² }`


By simplifying we get


T 4.9 s -----------------Ans.2

Time Period  of the pendulum on the Moon  is 4.9 seconds





Numerical Problems 10.4: A simple pendulum completes one vibration in two seconds. Calculate its length, when g = 10.0 msᐨ² .  Ans. (1.02 m)

... 

Given Data:

Time Period = T  = 2 s  (By Definition: Time Period is the time taken in one complete vibration)

Gravitational Acceleration on Moon = g = 10.0 msᐨ² 


Required:

Length of the pendulum on the Moon = l = ?


Solution:


The formula for Time Period of Pendulum


T = 2 ㄫ `\sqrt frac{l}{g}`


By taking square both sides 

T² = 4 ㄫ² `\frac{l_e}{g_e}`

By Using basic mathematics rules,  we will separate length l as


l `\frac{T² g}{4 ㄫ² }`

Now by putting values of each given quantities 

l `\frac{(2)² x 10 msᐨ²}{4 x (3.1416)² }`

by solving, we get

1.012 m --------------Ans

Length of the pendulum for a time period of 2s will be 1.012 m 




Numerical Problems 10.5: If 100 waves pass through a point of a medium in 20 seconds, what is the frequency and the time period of the wave? If its wavelength is 6 cm, calculate the wave speed. Ans. (5 Hz, 0.2 s, 0.3 msᐨ¹ ) 

... 

Given Data:


As 100 waves passes through a point in 20 Seconds.

So, Number of waves = 100

Time t = 20 s

Wavelength = 𝝀 = 6 cm = 0.06 m (conversion to SI units)


Required:


Frequency = = ?

Time Period = T= ?

Wave Speed = = ?



Solution:


To Find Frequency (f):

By Definition: Frequency (f) is the numbers of waves passes through a point in ONE second 


By Unitary Method

In 20 Seconds = 100 waves passes through a point

In 1 Second = `\frac{100}{20}` waves passes through a point 

In 1 Second = waves passes through a point

So, Frequency = f = 5 Hz ------------Ans. 1


-------------------------------------------

To Find Time Period (T):

By Definition: Time Period (T) is the time required to complete one vibration.


1st Method: By Unitary Method

100 waves passes through a point = 20 Seconds

waves passes through a point

`\frac {20}{100}` Seconds = 0.2 Seconds

So, Time Period = T = 0.2 s ------------Ans.2


2nd Method: By Formula

We know that Frequency (f) and Time Period (T) are reciprocal of each other i.e.

T = `\frac {1}{f}` = `\frac {1}{5 Hz}`  

T= 0.2 s-------------Ans.2

-------------------------------------------

To Find Wave Speed (v):

We know that Wave Speed (v)Frequency (f) and Wavelength (𝝀) are related as 

v = f 𝝀 = 5 Hz x 0.06 m 

= 0.3 msᐨ¹-----------Ans.3



Numerical Problems 10.6: A wooden bar vibrating into the water surface in a ripple tank has a frequency of 12 Hz. The resulting wave has a wavelength of 3 cm. What is the speed of the wave? Ans. (0.36 msᐨ¹ ) 

... 

Given Data:


Frequency = f  = 12 Hz 
Wavelength = 𝝀 = 3 cm = 0.03 m (conversion to SI units)


Required:


Speed of the wave  = v = ?



Solution:


We know that Wave Speed (v)Frequency (f) and Wavelength (𝝀) are related as 

v = f 𝝀 

= 12 Hz x 0.03 m 

= 0.36 msᐨ¹  ----------------Ans.



Numerical Problems 10.7: A transverse wave produced on a spring has a frequency of 190 Hz and travels along the length of the spring of 90 m, in 0.5 s. 
(a) What is the period of the wave? 
(b) What is the speed of the wave? 
(c) What is the wavelength of the wave? 
Ans. (0.01 s, 180 m s-1 , 0.95 m)

... 

Given Data:


Frequency = = 190 Hz

Distance = d = 90 m

Time = = 0.5 s



Required:


(a)  Time Period of the wave = T= ?

(b)  Wave Speed = = ?

(c)  Wavelength = 𝝀 = ?



Solution:


(a)  We know that Frequency (f) and Time Period (T) are reciprocal of each other i.e.

T = `\frac1{f}` = `\frac1{190 Hz}`


T= 0.005 s = 0.01 s  ---------------Ans.1



(b)  The formula for wave speed is 

Wave Speed = `\frac{d}{t}`

                      `\frac{90 m}{0.5 s}`

                      = 180 msᐨ¹  -----------Ans.2



(c)  We know that Wave Speed (v)Frequency (f) and Wavelength (𝝀) are related as 

v = f 𝝀 

𝝀 = `\frac{v}{f}`

𝝀 = `\frac{180 msᐨ¹}{190 Hz}`

𝝀 = 0.95 m  ------------------Ans.3



Numerical Problems 10.8: Water waves in a shallow dish are 6.0 cm long. At one point, the water moves up and down at a rate of 4.8 oscillations per second.
(a) What is the speed of the water waves?
(b) What is the period of the water waves?
Ans. (0.29 m s-1 , 0.21 s)

... 

Given Data:

Distance (Length of wave) = d = 6.0 cm = 0.06 m

Frequency = = 4.8 Hz


Required:

(a)  Wave Speed = = ?

(b)  Time Period of the wave = T= ?



Solution:


According to given data, to find wave speed, we first have to find the time period so, 

(b)  We know that Frequency (f) and Time Period (T) are reciprocal of each other i.e.

T = `\frac1{f}` = `\frac1{4.8Hz}` 

T= 0.21 s -------------Ans.

Now using = 0.21 s and = 0.06 m



(a)  The formula for wave speed is 

Wave Speed = `\frac{d}{t}`

                      v = `\frac{0.06m}{0.21s}`

                      = 0.29 m sᐨ¹ --------------Ans.




Numerical Problems 10.9: At one end of a ripple tank 80 cm across, a 5 Hz vibrator produces waves whose wavelength is 40 mm. Find the time the waves need to cross the tank. Ans. (4 s)

... 

Given Data:


Length = d = 80 cm = 0.8 m (conversion to SI units)

Frequency = = 5 Hz

Wavelength = 𝝀 = 40 mm = 0.04 m


Required:


Time  = = ?



Solution:


The formula for wave speed is

Wave Speed (v) = `\frac{d}{t}`

or

`\frac{d}{v}` ---------------(1)

Here the value of Speed v is unknown and we can find by using the formula

= f 𝝀 = 5 Hz x 0.04 m = 0.2 m s⁻¹

Thus putting corresponding values in equation (1) we have

t = 
`\frac{0.8m}{0.2 m s⁻¹}`

= 4 s -------------Ans.



Numerical Problems 10.10: What is the Wavelength of the radio waves transmitted by an FM station at 90 MHz? where 1M = 106, and speed of radio wave is 3 x 10⁸ msᐨ¹Ans. (3.33m)

... 

Given Data:


Frequency = = 90 MHz = 9 𝘅  10⁷ Hz

Speed = v = 3 𝘅 10⁸ m s⁻¹

Time = = 0.5 s


Required:


Wavelength = 𝝀 = ?



Solution:


We know that Wave Speed (v)Frequency (f) and Wavelength (𝝀) are related as 


v = f 𝝀 


𝝀 = `\frac{v}{f}`

𝝀 =
 `\frac{3 x 10⁸ m s⁻¹}{9 x 10⁷ Hz}`

𝝀 = 0.333 x 10⁸⁻⁷ 

𝝀 = 0.333 x 10 

or

𝝀 = 3.333 m ---------------Ans


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.