Find the angle between the two vectors, AA = 5ˆiˆi + ˆjˆj and BB = 2ˆiˆi + 4ˆjˆj (Ans: 52°)

Given:

AA = 5ˆiˆi + ˆjˆj 
BB = 2ˆiˆi + 4ˆjˆj


To Find:

Angle between the two vectors AA and BB = Ө = ?


Solution: 

We will solve this numerical by taking the dot product of the two vectors AA and BB given as 

AA . BB = |AA |BB| cos Ө

or

cos Ө =  A.B|A||B|A.BAB

cos Ө =  (5ˆi+ˆj).(2ˆi+4ˆj)(Ax2+Ay2)(Bx2+By2)(5ˆi+ˆj).(2ˆi+4ˆj)(Ax2+Ay2)(Bx2+By2)

cos Ө =  (52)ˆi.ˆi+(54)ˆi.ˆj+(12)ˆj.ˆi+(14)ˆj.ˆj(52+12)(22+42)



cos Ө =  10+425+14+16

cos Ө =  142620

cos Ө =  142620

cos Ө =  14520

cos Ө =  1422.804

cos Ө =  0.61

Ө = cos⁻¹ (0.61)

Ө = 52⁰

Thus, the angle Ө between the two vectors A and B is 52

************************************
************************************


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.