Find the work done when the point of application of the force 3ˆiˆi + 2ˆjˆj moves in a straight line from the point (2,-1) to the point (6,4). (Ans: 22 units)


Given:

FF = 3ˆiˆi + 2ˆjˆj 
Point 1 = (2, -1)
Here  x = 2 and  y₁ = -1
Point 2 = (6,4)
Here x₂ = 6 and y = 4

To Find:

Word done = W=?

Solution: 

We know that is the scaller product of Force FF and displacement dd

W = FF . dd  ------- Eqn (1)

The value of displacement d in From Eqn (1) is also unknown. So, we will first find the displacement d from the given two points (2, -1) and (6,4) by using the below formula.

dd = (x₂ - xˆiˆi + (y - y₁)ˆjˆj 

by putting values

dd = (6 - 2ˆiˆi + (4 - (-1))ˆjˆj 

dd = 4 ˆiˆi + 5ˆjˆj 

Now Eqn (1)

W = FF . dd

By putting values

W = (3ˆiˆi + 2ˆjˆj )( 4 ˆiˆi + 5ˆjˆj )

W = (3 x 4) ˆiˆi . ˆiˆi + (3 x 5) ˆiˆi . ˆjˆj + (2 x 4) ˆjˆj . ˆi + (2 x 5) ˆj . ˆj

[∴ ˆi . ˆi = ˆj . ˆj =1 and ˆi . ˆj = ˆj . ˆi =0 ]

So by putting these values we have

W = 12 + 0 + 0 + 10

W = 22 units--------Ans 

************************************
************************************


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.