Show that the three vectors `\hat {i}` + `\hat {j}` +`\hat {k}` , 2`\hat {i}` - 3`\hat {j}` + `\hat {k}` and 4`\hat {i}` + `\hat {j}` - 5`\hat {k}` are mutually perpendicular.
Given:
LetVector 1 is `\vec {A}` = `\hat {i}` + `\hat {j}` + `\hat {k}`
Vector 2 is `\vec {B}` = 2`\hat {i}` - 3`\hat {j}` + `\hat {k}`
Vector 3 is `\vec {C}` = 4`\hat {i}` + `\hat {j}` - 5`\hat {k}`
To Find:
To prove that the given three vectors are mutually perpendicular to each other.
Solution:
We know that if two vectors are mutually perpendicular to each other then their scalar (dot) product is equal to Zero. So, we should have to prove
(i) `\vec {A}` . `\vec {B}` = 0
(ii) `\vec {A}` . `\vec {C}` = 0
and
(iii) `\vec {B}` . `\vec {C}` = 0
(i) `\vec {A}` . `\vec {B}` = 0
`\vec {A}` . `\vec {B}` = (`\hat {i}` + `\hat {j}` + `\hat {k}` )( 2`\hat {i}` - 3`\hat {j}` + `\hat {k}` )
`\vec {A}` . `\vec {B}` = (1 x 2) `hat {i}` . `hat {i}` + (1 x -3) `hat {i}` . `hat {j}` + (1 x 1) `hat {i}` . `hat {k}` + (1 x 2) `hat {j}` . `hat {i}` + (1 x -3) `hat {j}` . `hat {j}` + (1 x 1) `hat {j}` . `hat {k}` + (1 x 2) `hat {k}` . `hat {i}` + (1 x -3) `hat {k}` . `hat {j}` + (1 x 1) `hat {k}` . `hat {k}`
[∴ `hat {i}` . `hat {i}` = `hat {j}` . `hat {j}` = `hat {k}` . `hat {k}` = 1
and
`hat {i}` . `hat {j}` = `hat {j}` . `hat {i}` = `hat {j}` . `hat {k}` = `hat {k}` . `hat {j}` = `hat {k}` . `hat {i}` = `hat {i}` . `hat {k}`= 0 ]
So by putting these values we have
`\vec {A}` . `\vec {B}` = 2 + 0 + 0 + 0 - 3 + 0 + 0 + 0 + 1
`\vec {A}` . `\vec {B}` = 0 --------Eqn (1)
(ii) `\vec {A}` . `\vec {C}` = 0
`\vec {A}` . `\vec {C}` = (`\hat {i}` + `\hat {j}` + `\hat {k}` )( 4`\hat {i}` + `\hat {j}` - 5`\hat {k}` )
`\vec {A}` . `\vec {C}` = (1 x 4) `hat {i}` . `hat {i}` + (1 x 1) `hat {i}` . `hat {j}` + (1 x -5) `hat {i}` . `hat {k}` + (1 x 4) `hat {j}` . `hat {i}` + (1 x 1) `hat {j}` . `hat {j}` + (1 x -5) `hat {j}` . `hat {k}` + (1 x 4) `hat {k}` . `hat {i}` + (1 x 1) `hat {k}` . `hat {j}` + (1 x -5) `hat {k}` . `hat {k}`
[∴ `hat {i}` . `hat {i}` = `hat {j}` . `hat {j}` =1 = `hat {k}` . `hat {k}`
and
`hat {i}` . `hat {j}` = `hat {j}` . `hat {i}` = `hat {j}` . `hat {k}` = `hat {k}` . `hat {j}` = `hat {k}` . `hat {i}` = `hat {i}` . `hat {k}`= 0 ]
So by putting these values we have
`\vec {A}` . `\vec {C}` = 4 + 0 + 0 + 0 + 1 + 0 + 0 + 0 - 5
`\vec {A}` . `\vec {C}` = 0 --------Eqn (2)
(iii) `\vec {B}` . `\vec {C}` = 0
`\vec {B}` . `\vec {C}` = (2`\hat {i}` - 3`\hat {j}` + `\hat {k}` )( 4`\hat {i}` + `\hat {j}` - 5`\hat {k}` )
`\vec {B}` . `\vec {C}` = (2 x 4) `hat {i}` . `hat {i}` + (2 x 1) `hat {i}` . `hat {j}` + (2 x -5) `hat {i}` . `hat {k}` + (-3 x 4) `hat {j}` . `hat {i}` + (-3 x 1) `hat {j}` . `hat {j}` + (-3 x -5) `hat {j}` . `hat {k}` + (1 x 4) `hat {k}` . `hat {i}` + (1 x 1) `hat {k}` . `hat {j}` + (1 x -5) `hat {k}` . `hat {k}`
[∴ `hat {i}` . `hat {i}` = `hat {j}` . `hat {j}` =1 = `hat {k}` . `hat {k}`
and
`hat {i}` . `hat {j}` = `hat {j}` . `hat {i}` = `hat {j}` . `hat {k}` = `hat {k}` . `hat {j}` = `hat {k}` . `hat {i}` = `hat {i}` . `hat {k}`= 0 ]
So by putting these values we have
`\vec {B}` . `\vec {C}` = 8 + 0 + 0 + 0 - 3 + 0 + 0 + 0 - 5
`\vec {B}` . `\vec {C}` = 0 --------Eqn (3)
Eqns (1), (2), and (3) show that the mutual dot product of given vectors `\vec {A}`, `\vec {B}`, and `\vec {C}` are zero. Hence, it is proved that these vectors are mutually perpendicular to each other.
************************************
Numerical Problem 2.9 ⇑ |
⇑
************************************
Shortcut Links For
1. Website for School and College Level Physics 2. Website for School and College Level Mathematics 3. Website for Single National Curriculum Pakistan - All Subjects Notes
© 2022-Onwards by Academic Skills and Knowledge (ASK)
Note: Write me in the comment box below for any query and also Share this information with your class-fellows and friends.
1. Website for School and College Level Physics
2. Website for School and College Level Mathematics
3. Website for Single National Curriculum Pakistan - All Subjects Notes
© 2022-Onwards by Academic Skills and Knowledge (ASK)
Note: Write me in the comment box below for any query and also Share this information with your class-fellows and friends.
0 Comments
If you have any QUESTIONs or DOUBTS, Please! let me know in the comments box or by WhatsApp 03339719149