The magnitude of dot and cross products of two vectors are 6√3 and 6 respectively. Find the angle between the vectors 
(Ans: 30°) 


Given:

Let the two vectors are `\vec {A}` and `\vec {B} 

`\vec {A}` . `\vec {B}` = 6 `\sqrt {3}`
`\vec {A}`  `\vec {B}` = 6

To Find:

Angle between the vectorsθ = ?


Solution: 

As we have

`\vec {A}` . `\vec {B}` = B cos θ = 6 `\sqrt {3}`

or

B cos θ =    6 `\sqrt {3}`   ---------Eqn(1)

And 

`\vec {A}` x `\vec {B}` = B sin θ = 6 

or

B sin θ =    --------- Eqn(2)


Now dividing Eqn(2) by Eqn (1)  

`\frac {A B sin θ}{A B cos θ}`  = `\frac {6}{6 sqrt {3}}`

`\frac {sin θ}{cos θ}`  = `\frac {1}{ sqrt {3}}`

 [∴  `\frac {sin θ}{cos θ}`= tan θ ]  So,

tan θ `\frac {1}{ sqrt {3}}`

θ tan⁻¹ ( `\frac {1}{ sqrt {3}}` )

θ = 30⁰ ------Ans
Thus the angle between two vectors is 30⁰

************************************

************************************


************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.