The line of action of force. F→ = i^ - 2j^ , passes through a point whose position vector is (-j^ + k^). Find 

(a) the moment of F→ about the origin, 

(b) the moment of F→ about the point of which the position vector is i^ + k^.


Given:

Force = F→ = i^ - 2j^ 
Position Vector = r→ -j^ + k^

To Find:

(a) The moment of F about the originr→ x F→ 

(b) The moment of F about the point of which the position vector is i^k^ = r→ ï½˜ F→ 


Solution: 

(a) The moment of F about the origin = r→ x F→ 

r→ xF→ = (-j^ + k^ ) x( i^ - 2j^  )

r→ xF→ = (-1 x 1) j^ ï½˜ i^ + (-1 x -2) j^ ï½˜ j^ + (1 x 1) k^ ï½˜ i^ + (1 x -2) k^ ï½˜ j^ 

[∴  j^ ï½˜ j^  = 0  and
j^ ï½˜ i^ = -`hat {k}` , k^ ï½˜ i^ j^i^ ï½˜ k^= -j^ ]

So by putting these values we have

r→ xF→ = - (-k^)  + 0` + j^ -2 (-i^ )

or

r→ xF→ = 2 i^ j^ + k^ ------Ans


(b) The moment of F about the point of which the position vector is i^k^ = r→ ï½˜ F→ 

Here we will get the moment arm r→ by subtracting the new position vector  i^k^ from the origin position vector -j^ + k^ So, 

r→-j^ + k^ - (i^k^)

r→-j^ + k^ - i^k^)

r→-j^ i^ 

r→-i^ j^ 

r→ xF→ = (-i^ j^  ) x( i^ - 2j^  )

r→ xF→ = (-1 x 1) i^ ï½˜ i^ + (-1 x -2) i^ ï½˜ j^ + (-1 x 1) j^ ï½˜ i^ + (-1 x -2) j^ ï½˜ j^ 

[∴ i^ ï½˜ i^ = j^ ï½˜ j^  =  = 0
and
i^ ï½˜ j^ = k^j^ ï½˜ i^ = -k^ ]

So by putting these values we have

r→ xF→ = o + 2 k^ - (-k^) + 0

or

r→ xF→ =  3 k^ --------Ans



************************************

************************************
⇑



************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.