The line of action of force. `\vec {F}` = `\hat {i}` - 2`\hat {j}` , passes through a point whose position vector is (-`\hat {j}` + `\hat {k}`). Find 

(a) the moment of `\vec {F}` about the origin, 

(b) the moment of `\vec {F}` about the point of which the position vector is `\hat {i}` + `\hat {k}`.


Given:

Force = `\vec {F}` = `\hat {i}` - 2`\hat {j}` 
Position Vector = `\vec {r}` -`\hat {j}` + `\hat {k}`

To Find:

(a) The moment of F about the origin`\vec {r}` x `\vec {F}` 

(b) The moment of F about the point of which the position vector is `\hat {i}` + `\hat {k}` = `\vec {r}` ï½˜ `\vec {F}` 


Solution: 

(a) The moment of F about the origin = `\vec {r}` x `\vec {F}` 

`\vec {r}` x`\vec {F}` = (-`\hat {j}` + `\hat {k}` ) x( `\hat {i}` - 2`\hat {j}`  )

`\vec {r}` x`\vec {F}` = (-1 x 1) `hat {j}` ï½˜ `hat {i}` + (-1 x -2) `hat {j}` ï½˜ `hat {j}` + (1 x 1) `hat {k}` ï½˜ `hat {i}` + (1 x -2) `hat {k}` ï½˜ `hat {j}` 

[∴  `hat {j}` ï½˜ `hat {j}`  = 0  and
`hat {j}` ï½˜ `hat {i}` = -`hat {k}` , `hat {k}` ï½˜ `hat {i}` `hat {j}``hat {i}` ï½˜ `hat {k}`= -`hat {j}` ]

So by putting these values we have

`\vec {r}` x`\vec {F}` = - (-`hat {k}`)  + 0` + `hat {j}` -2 (-`hat {i}` )

or

`\vec {r}` x`\vec {F}` = 2 `hat {i}` `hat {j}` + `hat {k}` ------Ans


(b) The moment of F about the point of which the position vector is `\hat {i}` + `\hat {k}` = `\vec {r}` ï½˜ `\vec {F}` 

Here we will get the moment arm `\vec {r}` by subtracting the new position vector  `\hat {i}` + `\hat {k}` from the origin position vector -`\hat {j}` + `\hat {k}` So, 

`\vec {r}` = -`\hat {j}` + `\hat {k}` - (`\hat {i}` + `\hat {k}`)

`\vec {r}` = -`\hat {j}` + `\hat {k}` - `\hat {i}` - `\hat {k})`

`\vec {r}` = -`\hat {j}` `\hat {i}` 

`\vec {r}` = -`\hat {i}` `\hat {j}` 

`\vec {r}` x`\vec {F}` = (-`\hat {i}` `\hat {j}`  ) x( `\hat {i}` - 2`\hat {j}`  )

`\vec {r}` x`\vec {F}` = (-1 x 1) `hat {i}` ï½˜ `hat {i}` + (-1 x -2) `hat {i}` ï½˜ `hat {j}` + (-1 x 1) `hat {j}` ï½˜ `hat {i}` + (-1 x -2) `hat {j}` ï½˜ `hat {j}` 

[∴ `hat {i}` ï½˜ `hat {i}` = `hat {j}` ï½˜ `hat {j}`  =  = 0
and
`hat {i}` ï½˜ `hat {j}` = `hat {k}``hat {j}` ï½˜ `hat {i}` = -`hat {k}` ]

So by putting these values we have

`\vec {r}` x`\vec {F}` = o + 2 `hat {k}` - (-`hat {k}`) + 0

or

`\vec {r}` x`\vec {F}` =  3 `hat {k}` --------Ans



************************************

************************************



************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.