The line of action of force. `\vec {F}` = `\hat {i}` - 2`\hat {j}` , passes through a point whose position vector is (-`\hat {j}` + `\hat {k}`). Find
(a) the moment of `\vec {F}` about the origin,
(b) the moment of `\vec {F}` about the point of which the position vector is `\hat {i}` + `\hat {k}`.
Given:
Force = `\vec {F}` = `\hat {i}` - 2`\hat {j}` Position Vector = `\vec {r}` = -`\hat {j}` + `\hat {k}`
To Find:
(a) The moment of F about the origin = `\vec {r}` x `\vec {F}`
(b) The moment of F about the point of which the position vector is `\hat {i}` + `\hat {k}` = `\vec {r}` x `\vec {F}`
Solution:
(a) The moment of F about the origin = `\vec {r}` x `\vec {F}`
`\vec {r}` x`\vec {F}` = (-`\hat {j}` + `\hat {k}` ) x( `\hat {i}` - 2`\hat {j}` )
`\vec {r}` x`\vec {F}` = (-1 x 1) `hat {j}` x `hat {i}` + (-1 x -2) `hat {j}` x `hat {j}` + (1 x 1) `hat {k}` x `hat {i}` + (1 x -2) `hat {k}` x `hat {j}`
[∴ `hat {j}` x `hat {j}` = 0 and`hat {j}` x `hat {i}` = -`hat {k}` , `hat {k}` x `hat {i}` = `hat {j}`, `hat {i}` x `hat {k}`= -`hat {j}` ]
So by putting these values we have
`\vec {r}` x`\vec {F}` = - (-`hat {k}`) + 0` + `hat {j}` -2 (-`hat {i}` )
or
(a) The moment of F about the origin = `\vec {r}` x `\vec {F}`
`\vec {r}` x`\vec {F}` = (-`\hat {j}` + `\hat {k}` ) x( `\hat {i}` - 2`\hat {j}` )
`\vec {r}` x`\vec {F}` = (-1 x 1) `hat {j}` x `hat {i}` + (-1 x -2) `hat {j}` x `hat {j}` + (1 x 1) `hat {k}` x `hat {i}` + (1 x -2) `hat {k}` x `hat {j}`
[∴ `hat {j}` x `hat {j}` = 0 and
`hat {j}` x `hat {i}` = -`hat {k}` , `hat {k}` x `hat {i}` = `hat {j}`, `hat {i}` x `hat {k}`= -`hat {j}` ]
So by putting these values we have
`\vec {r}` x`\vec {F}` = 2 `hat {i}` + `hat {j}` + `hat {k}` ------Ans
(b) The moment of F about the point of which the position vector is `\hat {i}` + `\hat {k}` = `\vec {r}` x `\vec {F}`
Here we will get the moment arm `\vec {r}` by subtracting the new position vector `\hat {i}` + `\hat {k}` from the origin position vector -`\hat {j}` + `\hat {k}` So,
`\vec {r}` = -`\hat {j}` + `\hat {k}` - (`\hat {i}` + `\hat {k}`)
`\vec {r}` = -`\hat {j}` + `\hat {k}` - `\hat {i}` - `\hat {k})`
`\vec {r}` = -`\hat {j}` - `\hat {i}`
`\vec {r}` = -`\hat {i}` - `\hat {j}`
`\vec {r}` x`\vec {F}` = (-`\hat {i}` - `\hat {j}` ) x( `\hat {i}` - 2`\hat {j}` )
`\vec {r}` x`\vec {F}` = (-1 x 1) `hat {i}` x `hat {i}` + (-1 x -2) `hat {i}` x `hat {j}` + (-1 x 1) `hat {j}` x `hat {i}` + (-1 x -2) `hat {j}` x `hat {j}`
[∴ `hat {i}` x `hat {i}` = `hat {j}` x `hat {j}` = = 0and`hat {i}` x `hat {j}` = `hat {k}`, `hat {j}` x `hat {i}` = -`hat {k}` ]
So by putting these values we have
`\vec {r}` x`\vec {F}` = o + 2 `hat {k}` - (-`hat {k}`) + 0
or
Here we will get the moment arm `\vec {r}` by subtracting the new position vector `\hat {i}` + `\hat {k}` from the origin position vector -`\hat {j}` + `\hat {k}` So,
`\vec {r}` = -`\hat {j}` + `\hat {k}` - (`\hat {i}` + `\hat {k}`)
`\vec {r}` = -`\hat {j}` + `\hat {k}` - `\hat {i}` - `\hat {k})`
`\vec {r}` = -`\hat {j}` - `\hat {i}`
`\vec {r}` = -`\hat {i}` - `\hat {j}`
`\vec {r}` x`\vec {F}` = (-`\hat {i}` - `\hat {j}` ) x( `\hat {i}` - 2`\hat {j}` )
`\vec {r}` x`\vec {F}` = (-1 x 1) `hat {i}` x `hat {i}` + (-1 x -2) `hat {i}` x `hat {j}` + (-1 x 1) `hat {j}` x `hat {i}` + (-1 x -2) `hat {j}` x `hat {j}`
[∴ `hat {i}` x `hat {i}` = `hat {j}` x `hat {j}` = = 0
and
`hat {i}` x `hat {j}` = `hat {k}`, `hat {j}` x `hat {i}` = -`hat {k}` ]
So by putting these values we have
`\vec {r}` x`\vec {F}` = 3 `hat {k}` --------Ans
************************************Numerical Problem 2.13
⇑
⇑
************************************
************************************
Numerical Problem 2.13 ⇑ |
⇑
************************************
Shortcut Links For
1. Website for School and College Level Physics 2. Website for School and College Level Mathematics 3. Website for Single National Curriculum Pakistan - All Subjects Notes
© 2022-Onwards by Academic Skills and Knowledge (ASK)
Note: Write me in the comment box below for any query and also Share this information with your class-fellows and friends.
1. Website for School and College Level Physics
2. Website for School and College Level Mathematics
3. Website for Single National Curriculum Pakistan - All Subjects Notes
© 2022-Onwards by Academic Skills and Knowledge (ASK)
Note: Write me in the comment box below for any query and also Share this information with your class-fellows and friends.
0 Comments
If you have any QUESTIONs or DOUBTS, Please! let me know in the comments box or by WhatsApp 03339719149