Vectors `\vec {A}`, `\vec {b}` and `\vec {C}` are 4 units north, 3 units west and 8 units east, respectively. Describe carefully (a) `\vec {A}` x `\vec {B}` (b) `\vec {A}` x `\vec {C}` (c) `\vec {B}` x `\vec {C}`

[Ans: (a)12 units vertically up (b) 32 units vertically down (c) Zero]


Given:

`\vec {A}` = 4 units North
`\vec {B}` 3 units West 
`\vec {C}` 8 units East 

So, keeping in view the given directions of the vectors
Angle 𝜽 between `\vec {A}` and `\vec {B}` = 90⁰
Angle 𝜽 between `\vec {A}` and `\vec {C}` = 90⁰
Angle 𝜽 between `\vec {B}` and `\vec {C}` = 180⁰


To Find:

(a)  `\vec {A}`  `\vec {B}`
(b)  `\vec {A}`  `\vec {C}`
(c)  `\vec {B}`  `\vec {C}`

Solution: 

(a)  `\vec {A}`  `\vec {B}`

Here we have 

`\vec {A}`  `\vec {B}` |`\vec {A}`|  |`\vec {B}`| Sin Ө `\hat {n}` 


 by putting values


`\vec {A}`  `\vec {B}` =  4 x 3  Sin 90⁰  `\hat {n}` 


Sin 90⁰ = 1 ]


`\vec {A}`  `\vec {B}` =  4 x 3  1  1 


`\vec {A}`  `\vec {B}` =  12 units ------Ans


According to the right-hand rules the direction will be vertically upwards.


(b)  `\vec {A}`  `\vec {C}`

Here we have 

`\vec {A}`  `\vec {C}` =  |`\vec {A}`|  |`\vec {C}`| Sin Ө `\hat {n}` 


 by putting values


`\vec {A}`  `\vec {C}` =  4 x 8  Sin 90⁰  `\hat {n}` 

 
Sin 90⁰ = 1 ]

`\vec {A}`  `\vec {C}` =  4 x 8  1 1 


`\vec {A}`  `\vec {C}`  32 units ------Ans


By right-hand rules, the direction will be vertically downwards.


(c)  `\vec {B}`  `\vec {C}`

Here we have 

`\vec {B}`  `\vec {C}` =  |`\vec {A}`|  |`\vec {C}`| Sin Ө `\hat {n}` 


 by putting values


`\vec {B}`  `\vec {C}` =  3 x 8  Sin 90⁰  `\hat {n}` 

 
Sin 180⁰ = 0 ]

`\vec {B}`  `\vec {C}` =  3 x 8  0  1 


`\vec {B}`  `\vec {C}` =  0 units  -------Ans


************************************
************************************



************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.