A metal, whose work function is 3.0 eV, is illuminated by the light of wavelength 3 x 10⁻⁷ m. Calculate the (a) threshold frequency, (b) maximum energy of photo-electrons, and (c) stopping potential (Answer: (a) 0.72 x 10¹⁵ Hz, (b) 1.16 eV (c) 1.16V)



Given data:

Work function = ф =  3.0 eV = 3.0 x 1.6 x 10⁻¹⁹ J = 4.8 x 10⁻¹⁹ J

 1 eV = 1.6 x 10⁻¹⁹ J ]

Wavelength of light = λ =  3 x 10⁻⁷ m

∴ Plank's Constant = h =  6.626 x 10⁻³⁴ m² kg s⁻¹

∴ Velocity of light = c =  3 x 10⁸ m s⁻¹


To Find:

(a) Threshold Frequency = f₀  ?

(b) Maximum energy of the photo-electron = K.E =?

(c) Stopping Potential = V₀  ?



Solution:


Since Work function ф is defined as 

ф = h f₀

or

f₀ = `\frac {ф}{h}` 

by putting values 

f₀ = `\frac {4.8 x 10⁻¹⁹ J}{6.626 x 10⁻³⁴ m² kg s⁻¹}`

f₀ = 0.724 x 10⁻¹⁵ Hz ------------Ans. 1

This is the minimum (Threshold) frequency of the light at which electrons can be ejected from the metal surface.


(b) Maximum energy of the photo-electron = K.E  ?

By using Einstein's photoelectric equation to find the maximum energy of an electron

`\K.E_{max}` = hf - ф --------------(1)

but Frequency f is unknown, so we have

V = f λ

or 

c = f λ      [ v = c ]  

or

f = `\frac {c}{λ}` 

So, equation (1) becomes

`\K.E_{max}` = h`\frac {c}{λ}` - ф ----------(2)

by putting values

`\K.E_{max}` = 6.626 x 10⁻³⁴ m² kg s⁻¹ x `\frac {3 x 10⁸ m s⁻¹}{3 x 10⁻⁷ m}`  - 4.8 x 10⁻¹⁹ J

`\K.E_{max}` = 6.626 x 10⁻¹⁹ J  - 4.8 x 10⁻¹⁹ J

`\K.E_{max}` = 1.82 x 10⁻¹⁹ J 

by expressing in electron Volts (eV) we have  1 eV = 1.6 x 10⁻¹⁹ J ] So, by the unitary method we have

`\K.E_{max}` = `\frac {1.82 x 10⁻¹⁹ }{1.6 x 10⁻¹⁹ }` eV

`\K.E_{max}` =1.14 eV -------------- Ans. 2

This is the maximum energy by which an electrum move after ejecting from the metal surface.



(c) Stopping Potential = V₀  ?

As the `\K.E_{max}` of the electron is equal to the work done on ejecting it from a metal surface, so

`\K.E_{max}`  = W -------------(1)

Where W = q V  = e V₀   

[ from electrostatic V = `\frac {w}{q}` and here q = e and V =  V₀}

So equation (1)

`\K.E_{max}`  = V₀

or 

V₀  `\frac {K.E_{max}}{e}`

by putting values

V₀  `\frac {1.14 eV}{e }`

e will cancel with each other So,  

V₀  = 1.14 V -----------------Ans. 3



************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.