Yellow light 577nm wavelength is incident on a cesium surface. The stopping voltage is found to be 0.25 V. Find
(a) the maximum K.E. of the photoelectrons
and (b) the work function of cesium. (Answer: (a) 4 ï½˜ 10⁻²⁰ J (b) 1.9 eV )


Given data:

Wavelength of yellow light = λ =  577 nm = 577 ï½˜ 10⁻⁹ m
 
Stoppage Voltage = V₀ = 0.25 V


∴ Plank's Constant = h =  6.626 x 10⁻³⁴ m² kg s⁻¹

∴ Velocity of light = c =  3 x 10⁸ m s⁻¹


To Find:

(a) Maximum energy of the photo-electron = K.E  ?

(b) Work function = Ñ„ = ?



Solution:

(a) Maximum energy of the photo-electron = K.E  ?

The formula for finding the maximum energy of an electron according to given data is

`\K.E_{max}` =  V₀ e


by putting values

`\K.E_{max}` =  0.25 V ï½˜ 1.6 x 10⁻¹⁹ C

`\K.E_{max}` = 0.4 ï½˜ 10⁻¹⁹ J

or

`\K.E_{max}` = 4 ï½˜ 10⁻²⁰ J -----------Ans.1


This is the maximum energy by Photo-electron.



(b) Work function = Ñ„ = ?

Using Einstein's photoelectric equation to find the maximum energy of the electron

`\K.E_{max}` = hf - Ñ„ 

or
 
Ñ„ = hf - `\K.E_{max}`

but Frequency f is unknown, so we have

V = f λ

or 

c = f λ      [ v = c ]  

or

f = `\frac {c}{λ}` 

So, equation (1) becomes

Ñ„ = h`\frac {c}{λ}` - `\K.E_{max}` ----------(2)

by putting values

Ñ„ = 6.626 x 10⁻³⁴ m² kg s⁻¹ x `\frac {3 x 10⁸ m s⁻¹}{577 x 10⁻⁹ m}` - 4 x 10⁻²⁰ J

Ñ„ = 3.45 x 10⁻¹⁹ J  - 0.4 ï½˜ 10⁻¹⁹ J

Ñ„ = 3.05 x 10⁻¹⁹ J 

by expressing in electron Volts (eV) we have  1 eV = 1.6 x 10⁻¹⁹ J ] So, using the unitary method we have

`\K.E_{max}` = `\frac {3.05 x 10⁻¹⁹ }{1.6 x 10⁻¹⁹ }` eV

`\K.E_{max}` =1.9 eV -------------- Ans.2


Similar Questions:



************************************

Shortcut Links For 


1. Website for School and College Level Physics   
2. Website for School and College Level Mathematics  
3. Website for Single National Curriculum Pakistan - All Subjects Notes 

© 2022-Onwards by Academic Skills and Knowledge (ASK    

Note:  Write me in the comment box below for any query and also Share this information with your class-fellows and friends.